A Framework for Implementation of Risk Management System in third Party managed Cloud

Adeniran Solomon Abiodun
Tshwane University of Technology, South Africa
biodundudu02@yahoo.com

Abstract
A lot of research has been carried out in the field of risk management, as well as IT auditing, however risks and operation of information and data still threaten organizations processes and activities. Also, these two disciplines have been discretely managed and researched in the industry and academic, respectively. It therefore will be of importance to investigate the interface between the two disciplines. The purpose of this research is to investigate and understand audit and risk management system in the information technology environment. To lay a foundation for a discussion of the role of information systems in risk management, we must first define and understand the needs that drive organizations to implement risk management functions (Gibson, 1997). Information System (IS) was introduced to the business as a means of improving operational efficiency. It was initially used as a tool only for performing organisations operations, now it is a very important aspect of an organisation’s existence and survival, no operation can be carried out in an organisation without IS. Therefore we have to place an emphasis on IS risk management. The disruption of operations can also become more Important than the replacement of IS assets. Due to the costly cost of delays brought about by breakdown of IS which sometimes is caused by negligence and malicious intent the need for Risk management of IS facilities, process and staff came about and since the advent of this there has been a great improvement in business process because disruptions are less (Kamesam, 2001). In ideal risk management, a prioritization process is followed whereby the risks with the greatest loss and the greatest probability of occurring are handled first, and risks with lower probability of occurrence and lower loss are handled in descending order of occurrence and can often be mishandled (ISO/IEC, 2009). Risk management also faces difficulties allocating resources. This is the idea of opportunity cost. Resources spent on managing risks could have been spent on more profitable activities. Again,
ideal risk management minimizes spending while maximizing the reduction of the negative effects of risks.

Keywords: Information System, Risk Management, Risk, Business, Operations

Introduction

Introduction to the field of study

The advent of new technological inventions and innovations causes continual change in modern day way of life; Information Technology is the most influential one of these technologies being applied in almost every aspect of human life. The turn of the twenty-first century has been largely dubbed the “information age” due to the immense influence of the field of information technologies and systems on daily life. The speed of information and data transfer enabled by computing and communication technologies in today’s world is a huge difference compared to the 1970s communication atmosphere. The face of the business world experienced a global change with exposure to a growing range of information systems capabilities over the past three decades.

The numerous security issues involved in the use of computing technology may seem subdued as a result of effort into mitigation techniques that are implemented by security experts to counter known and perceived threats. However, organizations and individuals suffer one form of loss or other due to security related issues with distributed computing. Cloud computing, which is a major landmark in recent history of computing and is recording a very fast growth in adoption rate, does not lack its own security issues; they range from loss of control to multi-tenancy. The virtualization nature of cloud computing brings about intricacies in the monitoring of all resources in the several (virtual) layers; this is as a result of the utilization of numerous server resources concurrently (Ko et al 2010).

This research aims to identify these security concerns with a view to recommendations of possible measures to reduce these security risks and vulnerabilities at enterprise level especially. It is rather pertinent that organizations develop and adhere to their own security framework to enable the overall management of data securely which boosts the level of trust in using the information systems in general. In the application areas in information security risk management, cloud
computing is commercially feasible alternative for enterprises in seeking a cost-effective storage and server solution (Waxer 2010).

Addressing issues related to privacy control and security vulnerabilities within the versatile use of computing technology increases cloud technology adoption as a result of established or perceived trust. Keeping security risks to a minimal level does not only augur well for vendors and their clients but also deters nefarious activities that could compromise security and privacy. The number of enterprises that are taking to cloud computing technology as a technique to minimize cost and increase profitability are increasing, industry CIOs usually have the burden of reducing capital assets, staff unit numbers, and other costs, through the use of cloud computing systems (Brendl, 2010).

In conducting these kinds of studies in this area, it gives the (academic) researchers the opportunity to identify further trends, increase chances of solving problems, developing and unifying of frameworks, and most importantly contribution to the IS body of knowledge etc. due to the flexible and scalable attributes of cloud computing, it is possible to remotely develop, deploy, and sell software and IT services. This exposes the plethora of risks that an organization faces at every phase of the project process. Knowing the risks that the organization is prone to allows for coordinated mitigation actions, like formulating and implementing a security and risk framework, which will detail risks, triggers, response actions etc. The role that this study also plays is to increase interest in advancing security infrastructure that keeps the cloud safer to cruise (Buyya 2009).

Due to gained trust, the return on investment for cloud computing technologies becomes more stable and viable; these virtual servers host various data centers which are then used to create cloud services culminates a significant investment in capital expenditure and ongoing operational costs. The entities that adopt the technology are now exposed to a wider range of capabilities due to the encouraged research and development in the area of computing technology and innovation. A few risks of the Cloud clients’ are taken over by the vendor or third party managed processes such as the seamless integration of applications, systems or platforms, updates and upgrades, etc. Cloud
adoption has been argued to be on the rise as result of lower costs on overall services but Greenberg et al (2009) still asks the question of where the costs actually go.

Background of study

The adoption of virtualization technologies had become prevalent in corporate organizations since the 1990s. As a result of the complex capabilities that are offered by virtual networking, managed cloud implementations and/or adoptions around the world are on the increase. The actual nature of virtualization in the case of cloud technology basically describes a computer network that is permanently connected to the internet and provides a platform of delivering an array of capabilities and services. Implementing security and threat aversion protocols is a part and parcel of the computing culture.

Cloud capabilities have been largely adopted in corporate circles as the new norm for networking and shared resources. Even free cloud services like Google drive and Dropbox just to mention a few are available, which makes it viable for widespread corporate adoption, due to a general public that had already in some way profited from cloud technology offerings, various online services especially data storage capability and hosted services.

In comparison to grid computing, cloud accommodates clients that are part of enterprise that processes data in the cloud environment while subject to an inherent level of vulnerabilities. When data stored on the cloud, it is imperative to ensure data integrity; making sure the data is correctly stored and can be retrieved later. The size of data stored by the cloud for a specific client could be massive, it is impractical (and might also be very costly) to retrieve all the data, if one’s purpose is just to make sure that it is stored correctly. Hence there is a need to provide such guarantees to a client.

Below is a model that depicts the nature and options of cloud computing technology environment.
Overview of cloud systems (Source: Schubert et al., 2010)

Research problem statement

With the inception of the internet came security and privacy concerns that influences trust with this form of technology. Although these issues had existed within various forms of distributed computing, the recent emergence of cloud computing places these concerns on a high alert, given the nature of how cloud is actually a host of virtual servers. A key issue area with clients is security and privacy, which can be managed appropriately to reduce related threats, this helps to form a level of trust between service provider and client.
Hence there is a need to further build on the gap in the body of knowledge by developing a model that can serve as a guide for enterprise in safer cloud adoption methods and also a more secure service offering from a vendor point of view in third party managed cloud.

Research objectives

Goal

The goal of this study is to evaluate inherent and emerging security risks in CipherCloud’s third party managed cloud model.

Objectives

(i) To identify security risks (prevalent or emerging) in managed cloud

(ii) To determine factors that can reduce security risks and vulnerabilities

(iii) To identify major trust issues (if any) that is associated with cloud security threats

(iv) To formulate a model to help minimize security risks in cloud computing to improve trust

Research Questions

Primary Research Question

How to evaluate security risks and vulnerabilities that exist in cloud computing?

Secondary research questions

(i) What are the main security risk factors for clients using managed cloud computing?

(ii) What are the mitigating factors that can reduce security risks in cloud environment?
(iii) How is possible trust concerns linked with security risks in managed cloud?

Justification of the study

Owing to the evolution of cloud, which is rapidly changing the face of computing, it is pertinent that enterprise in service provider-client relationship deliver their cloud offering with a high level security and privacy in mind to create a trust relationship. It is relevant to promoting security in cloud and importantly establishing further knowledge of the clients’ perceptions. Vouk (2008) identified that security in the cloud computing environment is a research and engineering challenge that is worth attention.

This kind of study allows vendors providing cloud services access to sets of methods to combat security and privacy issues because when clients hire outsourced services from cloud provider, there is a loss of control on a physical and logical level. Kumar et. al. (2012) states that “Network security measures are implemented to get protection from various threats and prevent these threats from entering or spreading on a given network”.

Expected research contribution

This study is expected to contribute to the information technology body of knowledge on managed cloud model security frameworks in the South African and African cloud environment. The model that is proposed to be developed will be applicable practically by cloud services providers, enterprise and researchers in the area of computing security. It may also have theoretical implications due to the evolution stages of cloud.
Literature Review

Roaming in the Clouds

Overview

Resources and services, which are managed and/or delivered on various computing technology platforms, are expected to be secure in order to achieve its set objectives (“protecting the integrity, availability, and confidentiality of information system resources”) (NIST 2006). Since the inception of high-speed digital networks which has been widely used by consumers. The reports of new attack techniques on various distributed digital networks have become prevalent in the 21st century. While policy makers are to highly prioritize legislation on breaching of computer security. Computer software/hardware dedicated to security has shown increasing vulnerabilities that makes it susceptible to attack. Some attacks are due to the strategic design flaws that hinder optimal performance when compromised by breach in the security standards (Stallings 2011). Security attacks may be classified in two parts namely, passive and active.

The 21st century environment of IT infrastructures is largely characterized by changes in handling of resources, resource usage and the general economic and financial methods used in service provision and subscription-consumption. In the particular case the virtualization of a series computing resources on a cloud technology, which is the most recent form of distributed computing and shared resources, the privacy and security issues that are inherent are also a serious challenge to be addressed (Zissis and Lekkas 2012). Using appropriate measures to mitigate these security threats boosts confidence in the use of cloud technology. Cloud models essentially enable ubiquitous and convenient computing, allowing a real-time on-demand network access to shared set of configurable computing resources (e.g., networks, servers, storage, applications, and services). The services and resources provided thus are done at a rapid rate with minimal effort from service provider, using a software distribution model where applications and other resources are hosted by a service provider and is made available to clients on a distributed virtual network for remote access (Kumar et. al. 2012). In order to successfully implement cloud computing at enterprise level, requires a thorough plan and to understand the inherent and emerging risks, threats, vulnerabilities, and possible countermeasures to reduce them.
Strengths and Benefits of Cloud

The strong point of cloud computing in information security risk mitigation is the ability to manage security risk more efficiently from a central control point.

Bendandi (2009) highlights the top security benefits of cloud computing:

- Large scale implementation are cost-effective even security threats countermeasures, fast response to incidents and a centralized security risk management.
- Improved security practices encourage many cloud clients to buy on the basis of the reputation of confidentiality and integrity.
- Rapid and smart scaling of resources where cloud provider dynamically reallocates resources for various processes.
- Auditing; where dedicated pay-per-session detailed images of virtual machines are accessible without taking infrastructure offline.
- Environmental (green) benefits
 - Array of shared configurable resources - provide access for SMEs more advanced ICT allowing faster movement into new markets with less financial risk
 - Creating open market technology opportunity for IT providing industry – their services gain commercial benefits consequently.

Challenges and trends

Formulating and implementing cloud-specific security protocols is a high profile challenge for the service provider. However, the idea of having a singular digitized market scenario that incorporates various geographical locations faces the obstacles of legal regulations and the lack of boundaries on the internet. Use of intelligent strategies to usurp known challenges in cloud security is being exploited.

Currently being applied in cloud computing is the use of trust protocols for distributed systems/wireless networks. This is an attempt to securing the cloud and a sign of the dedicated effort from security professionals to minimize threats. Gartner Inc. predicted that by 2012, 80 percent of Fortune 1000 enterprises will commit financially to some cloud-computing service,
while 30 percent acquire cloud-computing infrastructure (Waxer 2010). Just like in most other areas of computers, security is considered to be a key impediment for cloud computing, researchers and experts have varying views on the issue of security in cloud computing which ranges from the pros to cons (Kumar et. al. 2012).

Costs/Weaknesses of Cloud computing

The cost of cloud computing in information security risk management comprises of the costs of: designing, migrating, implementing, integrating, and training staff. Also it includes the cost of training supporting people in the new processes. The newly adopted architecture could pose new security vulnerabilities thereby driving cost up. While the technology has its fair share of negatives (such as privacy and security concerns), an undisputable potential benefit is turning a lot cloud cynics into fans (Waxer, 2010).

Related Work

Current Cloud technology practices make it difficult for transparency that allows the user to understand the level of security they have on their resources and data. This inability of the customer to actually verify the implemented security protocols of a cloud computing service provider because the customer generally has no access to the provider’s facility which can be comprised of multiple facilities around the world (Anantwar et al 2012). Anantwar et al (2012) suggests further study in implementing some security strategies with technology and management ways.

Bannerman (2011) indicates limitations in the study: “the state of practice data was drawn from industry commentary rather than academic experience reports and sampling was not random; the field is developing so rapidly that it is very difficult for one researcher to span all available/emerging information, and; the scope was limited to adoption, at the expense of provision. However, these limitations provide opportunities for future research.”

Theoretical foundations: IS theory

Theoretical framework: this guides the study, by influencing what things to measure, and what statistical relationships are important.
<table>
<thead>
<tr>
<th>PARADIGM</th>
<th>RESEARCH APPROACH</th>
<th>METHODOLOGY</th>
<th>METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positivist</td>
<td>Quantitative</td>
<td>Survey Research</td>
<td>Close-ended Questionnaire, Statistical Analysis, Documentation review, Discussions.</td>
</tr>
</tbody>
</table>

Conceptual framework: this translates theory into meaningful practice. This concept for this study is derived from the activity theory.

References

